AI in medicine: Hype, hope, and the path forward

Authors

  • A E Daryanani Advancing a Healthier Wisconsin Endowment, Medical College of Wisconsin, Milwaukee, USA
  • J M Ehrenfeld Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA; American Medical Association, Chicago, USA

DOI:

https://doi.org/10.7196/SAMJ.2025.v115i5b.3668

Keywords:

Artificial intelligence, AI‐driven diagnostics

Abstract

Artificial intelligence (AI) is rapidly transforming healthcare, with applications ranging from diagnostics and predictive analytics to administrative automation. AI holds immense potential to enhance clinical efficiency and improve patient outcomes; however, its integration into medical practice is not without challenges. Physicians remain divided; some view AI as a powerful tool for augmenting medical decision‐making, while others question its reliability, ethical implications, and impact on the physician‐patient relationship. This article examines the promise and limitations of AI in medicine, addressing critical concerns surrounding bias, liability, regulatory uncertainty, and physician adoption. It explores how AI is currently being used in healthcare, the barriers preventing its seamless integration, and the governance structures needed to ensure its responsible deployment.

References

1. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023;23(1):689. https://doi.org/10.1186/s12909‐023‐ 04698‐z

2. American Medical Association. Physician sentiments around the use of AI in health care: Motivations, opportunities, risks, and use cases. https://www.ama‐assn.org/system/files/physician‐ai‐sentiment‐ report.pdf. (accessed 22 February 2025).

3. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366(6464):447‐453. https://doi.org/10.1126/science. aax2342

4. Melnick ER, Harry E, Sinsky CA, et al. Perceived electronic health record usability as a predictor of task load and burnout among US physicians: Mediation analysis. J Med Internet Res 2020;22(12):e23382. https://doi.org/10.2196/23382

5. American Medical Association. Augmented intelligence in medicine: 2025 (updated 02/12/2025). https://www.ama‐assn.org/practice‐management/digital/augmented‐intelligence‐medicine. (accessed 21 February 2025)

6. Crigger E, Reinbold K, Hanson C, Kao A, Blake K, Irons M. Trustworthy augmented intelligence in health care. J Med Syst 2022;46(2):12. https://doi.org/10.1007/s10916‐021‐01790‐z

7. Aidoc. AI empowering radiologists. https://www.aidoc.com/solutions/radiology/. (accessed 23 February 2025)

8. Graeve VIJ, Laures S, Spirig A, et al. Implementation of an AI algorithm in clinical practice to reduce missed incidental pulmonary embolisms on chest CT and its impact on short‐term survival. Invest Radiol 2025;60(4):260‐266. https://doi.org/10.1097/RLI.0000000000001122.

9. Topff L, Ranschaert ER, Bartels‐Rutten A, et al. Artificial intelligence tool for detection and worklist prioritization reduces time to diagnosis of incidental pulmonary embolism at CT. Radiol Cardiothorac Imaging 2023;5(2):e220163. https://doi.org/10.1148/ryct.220163

10. Voter AF, Meram E, Garrett JW, Yu JJ. Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 2021;18(8):1143‐1152. https://doi.org/10.1016/j.jacr.2021.03.005

11. Weikert T, Winkel DJ, Bremerich J, et al. Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI‐powered algorithm. Eur Radiol 2020;30(12):6545‐6553. https:// doi.org/10.1007/s00330‐020‐06998‐0

12. Winkel DJ, Heye T, Weikert TJ, Boll DT, Stieltjes B. Evaluation of an AI‐based detection software for acute findings in abdominal computed tomography scans: Toward an automated work list prioritization of routine CT examinations. Invest Radiol 2019;54(1):55‐59. https://doi.org/10.1097/ rli.0000000000000509

13. Al‐Antari MA. Artificial intelligence for medical diagnostics: Existing and future AI technology! Diagnostics 2023;13(4). https://doi.org/10.3390/diagnostics13040688

14. Li YH, Li YL, Wei MY, Li GY. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci Rep 2024;14(1):18994. https://doi.org/10.1038/s41598‐024‐70073‐7

15. Lv H, Yang X, Wang B, et al. Machine learning‐driven models to predict prognostic outcomes in

patients hospitalized with heart failure using electronic health records: Retrospective study. J Med

Internet Res 2021;23(4):e24996. https://doi.org/10.2196/24996

16. Chi CY, Ao S, Winkler A, et al. Predicting the mortality and readmission of in‐hospital cardiac

arrest patients with electronic health records: A machine learning approach. J Med Internet Res

2021;23(9):e27798. https://doi.org/10.2196/27798

17. Li F, Wang S, Gao Z, et al. Harnessing artificial intelligence in sepsis care: Advances in early detection,

personalized treatment, and real‐time monitoring. Front Med 2024;11:1510792. https://doi.

org/10.3389/fmed.2024.1510792

18. Zhang Q, Wang J, Liu G, Zhang W. Artificial intelligence can use physiological parameters to optimize treatment strategies and predict clinical deterioration of sepsis in ICU. Physiol Meas 2023;44(1). https://doi.org/10.1088/1361‐6579/acb03b

19. Attia ZI, Kapa S, Lopez‐Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence‐enabled electrocardiogram. Nat Med 2019;25(1):70‐74. https://doi.org/10.1038/s41591‐ 018‐0240‐2

20. AttiaZI,NoseworthyPA,Lopez‐JimenezF,etal.Anartificialintelligence‐enabledECGalgorithmforthe identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019;394(10201):861‐867. https://doi.org/10.1016/s0140‐6736(19)31721‐0

21. Cohen‐Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J 2021;42(30):2885‐2896. https://doi.org/10.1093/eurheartj/ ehab153

22. DuBrock HM, Wagner TE, Carlson K, et al. An electrocardiogram‐based AI algorithm for early detection of pulmonary hypertension. Eur Respir J 2024;64(1). https://doi.org/10.1183/13993003.00192‐2024 23. Grogan M, Lopez‐Jimenez F, Cohen‐Shelly M, et al. Artificial intelligence‐enhanced electrocardiogram

for the early detection of cardiac amyloidosis. Mayo Clin Proc 2021;96(11):2768‐2778. https://doi.

org/10.1016/j.mayocp.2021.04.023

24. Kashou AH, Medina‐Inojosa JR, Noseworthy PA, et al. Artificial intelligence‐augmented electrocardiogram detection of left ventricular systolic dysfunction in the general population. Mayo Clin Proc 2021;96(10):2576‐2586. https://doi.org/10.1016/j.mayocp.2021.02.029

25. Lee E, Ito S, Miranda WR, et al. Artificial intelligence‐enabled ECG for left ventricular diastolic function and filling pressure. NPJ Digit Med 2024;7(1):4. https://doi.org/10.1038/s41746‐023‐00993‐7 26. Bundy H, Gerhart J, Baek S, et al. Can the administrative loads of physicians be alleviated by AI‐facilitated clinical documentation? J Gen Intern Med 2024;39(15):2995‐3000. https://doi.

org/10.1007/s11606‐024‐08870‐z

27. Kernberg A, Gold JA, Mohan V. Using ChatGPT‐4 to create structured medical notes from audio recordings of physician‐patient encounters: Comparative study. J Med Internet Res 2024;26:e54419. https://doi.org/10.2196/54419

28. Ma SP, Liang AS, Shah SJ, et al. Ambient artificial intelligence scribes: Utilization and impact on documentation time. J Am Med Inform Assoc 2025;32(2):381‐385. https://doi.org/10.1093/jamia/ ocae304

29. Daryanani AE, Maduekwe UN, Baird P, Ehrenfeld JM. Ensuring medical device safety: The role of standards organizations and regulatory bodies. J Med Syst 2025;49(1):16. https://doi.org/10.1007/ s10916‐025‐02150‐x

30. American Medical Association. AMA AI state advocacy and policy priorities: Issue Brief, 2025 (updated 2024‐12‐01). https://www.ama‐assn.org/system/files/issue‐brief‐ai‐state‐advocacy‐policy‐ priorities.pdf (accessed 26 February 2025).

31. Liu Y, Primiero CA, Kulkarni V, Soyer HP, Betz‐Stablein B. Artificial intelligence for the classification of pigmented skin lesions in populations with skin of color: A systematic review. Dermatology 2023;239(4):499‐513. https://doi.org/10.1159/000530225

32. Deb B, Rodman A. Racial differences in pain assessment and false beliefs about race in AI models. JAMA Netw Open 2024;7(10):e2437977. https://doi.org/10.1001/jamanetworkopen.2024.37977

33. Pierson E, Cutler DM, Leskovec J, Mullainathan S, Obermeyer Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med 2021;27(1):136‐140. https://doi. org/10.1038/s41591‐020‐01192‐7

Downloads

Published

2025-05-30

How to Cite

1.
Daryanani AE, Ehrenfeld JM. AI in medicine: Hype, hope, and the path forward. S Afr Med J [Internet]. 2025 May 30 [cited 2025 Oct. 29];115(5b):e3668. Available from: https://www.samajournals.co.za/index.php/samj/article/view/3668